´Ý±â
TaKaRa
Á¦Ç°¸í/Á¦Ç°ÄÚµå
Å°¿öµå°Ë»ö
°Ë»ö
´Ý±â
  • °í°´Áö¿ø 
  • ¾÷¹«¾È³»¦¢Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢02-2081-2510
  • Email     ¦¢[email protected]
  • ´ëÀüÁö»ç 
  • ¾÷¹«¾È³»¦¢´ëÀü/ÃæûÁö¿ª ÁÖ¹®, Á¦Ç°¹®ÀÇ
  • ÀüÈ­¹øÈ£¦¢042-828-6525
  • Email     ¦¢[email protected]
  • ¾÷¹«½Ã°£¾È³»
  • [ Æò¡¡¡¡ÀÏ ] 09 : 00 ~ 18 : 00 ¦¢ [ Á¡½É½Ã°£ ] 12 : 00 ~ 13 : 00
  • Å䡤ÀÏ¿äÀÏ, °øÈÞÀÏÀº ÈÞ¹«ÀÔ´Ï´Ù.
Home > ÀüÁ¦Ç°º¸±â > Epigenetics > ChIP-seq, Cut&Run-seq (NGS) > [ChIP-seq ³í¹®¸®½ºÆ®] ThruPLEX¢ç DNA-Seq Kit

[ChIP-seq ³í¹®¸®½ºÆ®] ThruPLEX¢ç DNA-Seq Kit

-

[³í¹®¸®½ºÆ®] ThruPLEX¢ç DNA-Seq Kit for ChIP-Seq
ThruPLEX¢ç¸¦ ÀÌ¿ëÇϸé ChIP-Seq ºÐ¼®ÀÌ ´õ¿í ½º¸¶Æ®ÇØÁý´Ï´Ù!

¿©·¯ºÐÀÇ ½ÇÇèÀ» ¼º°øÀ¸·Î À̲ø±â À§ÇÏ¿© ³ë·ÂÇÏ´Â ´ÙÄ«¶óÄÚ¸®¾Æ¿¡¼­ Chromatin Immunoprecipitation sequencing (ChIP-seq)À» À§ÇÑ »õ·Î¿î Á¦Ç°À» ¼Ò°³ÇÕ´Ï´Ù. ChIP-seq
ºÐ¾ß¿¡¼­ °¡Àå Á¤ÆòÀÌ ³ª ÀÖ´Â, ThruPLEX¢ç DNA-Seq KitÀ» ¸¸³ªº¸¼¼¿ä!

ThruPLEX¢ç DNA-Seq Kit (Code R400523)
  • ThruPLEX¢ç Technology ±â¹Ý
  • High performance: ¼Ò·® DNA Àû¿ë (50pg to 50ng DNA)
  • ³ÐÀº Àû¿ë¼º: Genomic DNA, ChIP-DNA, FFPE DNA, cDNA, cell-free DNA Àû¿ë °¡´É
  • Fast and simple: ´ÜÀÏ Æ©ºê¿¡¼­ ´Ü 3¹øÀÇ ½ºÅÜ (Á¶À۽ð£ 15ºÐ)

[³í¹®¸®½ºÆ®]
1. Baejen, C. et al. Genome-wide analysis of RNA Polymerase II termination at protein-coding. Genes. Mol. Cell 66, 1-12 (2017). doi: 10.1016/j.molcel.2017.02.009
  • È¿¸ðÀÇ RNA Pol II Termination °úÁ¤À» ±Ô¸íÇϱâ À§ÇÏ¿©, ChIP-seq, ChIP-qPCR µî ½ÇÇèÇÏ¿´À¸¸ç, ThruPLEX¢ç DNA-Seq KitÀ» ÀÌ¿ëÇÏ¿© ChIP-seq NGS library¸¦ Á¦Á¶ÇÏ¿´´Ù.
  • ³í¹®ÀúÀÚ´Â ChIP-seq ºÐ¼®À» ÅëÇÏ¿©, È¿¸ðÃâ¾Æ°úÁ¤¿¡¼­ÀÇ 3¡¯-transitionÀº Pol II elongation factor Spt5¸¦ ÇÊ¿ä·Î ÇÑ´Ù´Â °ÍÀ» ±Ô¸íÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


2. Maatouk, D.M. et al. Genome-wide identification of regulatory elements in Sertoli cells. Development 144, 720-30 (2017). doi: 10.1242/dev.142554
  • º» ³í¹®Àº ¸¶¿ì½º ¼¼¸£Å縮ÁÖ ¼¼Æ÷(Sertoli cells)¿¡¼­ ¼ºº°°áÁ¤°úÁ¤ (Sex determination)ÀÇ Á¶ÀýÀÎÀÚ¸¦ ±Ô¸íÇϱâ À§ÇÏ¿© ChIP-seq, DNaseI-seq, RNA-seq ½ÇÇèÀ» ÇÏ¿´À¸¸ç, FACS·Î ºÐ¸®ÇÑ ¸¶¿ì½º ¼¼¸£Å縮ÁÖ ¼¼Æ÷·ÎºÎÅÍ ThruPLEX¢ç DNA-Seq KitÀ» ÀÌ¿ëÇÏ¿© ChIP-seq library¸¦ Á¦ÀÛÇÏ¿´´Ù.
  • H3K27acÀÇ chromatin landscape¿¡ DNAaseI-seq peak¸¦ ¿À¹ö·¦(overlap), ºÐ¼®ÇÔÀ¸·Î½á H3K27ac Enhancer°¡ ¸¶¿ì½º ¼¼¸£Å縮ÁÖ¼¼Æ÷ÀÇ ¼ºº°°áÁ¤°úÁ¤ÀÇ Ãʱâ´Ü°è(early stage)¿¡¼­¸¸ È°¼ºÀ» Áö´ÔÀ» È®ÀÎÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


3. Liu, Y. et al. Transcriptional landscape of the human cell cycle. PNAS 114, 3473-78 (2017). doi: 10.1073/pnas.1617636114
  • º» ³í¹®Àº ChIP-seq, DNase-seq, RNA-seq, GRO-seq ºÐ¼®À» Á¶ÇÕÇÏ¿©, ¼¼Æ÷ÁÖ±â (cell cycle) µ¿¾ÈÀÇ transcriptional landscape¸¦ ±Ô¸íÇÏ¿´´Ù. ChIP-seq, DNase-seq library´Â ThruPLEX¢ç DNA-Seq Kit·Î Á¦À۵Ǿú´Ù.
  • º» ³í¹®ÀÇ ÀúÀÚ´Â MCF-7 breast cancer cell lineÀ» »ç¿ëÇÏ¿© ¼¼Æ÷Áֱ⿡¼­ Àü»ç»óÅÂ¿Í steady-stateÀÇ RNA ¹ßÇö·¹º§¿¡¼­ÀÇ ½Ã°£Áö¿¬ (lag)À» ±Ô¸íÇÏ¿´´Ù. ¶ÇÇÑ, ÀúÀÚ´Â ¼¼Æ÷Áֱ⠵¿¾ÈÀÇ Transcriptional°ú epigenetic dynamicÀÇ Á߿伺¿¡ ´ëÇÏ¿© °­Á¶ÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


4. Warrick, J.I. et al. FOXA1, GATA3 and PPAR¥ã cooperate to drive luminal subtype in bladder cancer: A molecular analysis of established human cell lines.
   Sci. Reps. 6, 38531 (2016).
doi:10.1038/srep38531
  • Human cell lineÀÌ ºÐÀÚ¼öÁØÀÇ ¹æ±¤¾Ï(bladder cancer) ¿¬±¸¿¡ ÀûÇÑÇÑÁö ChIP-seq, RNA-seqÀ» ÅëÇØ È®ÀÎÇÏ¿´´Ù. ChIP-SeqÀº ThruPLEX¢ç DNA-Seq Kit·Î Á¦ÀÛÇÏ¿´´Ù.
  • º» ³í¹®ÀÇ ÀúÀÚ´Â PPAR¥ã, GATA3, FOXA1 À¯ÀüÀÚÀÇ °ú¹ßÇöÀÌ ¹æ±¤¾ÏÀÇ ÀüȯºÐÈ­ (transdifferentiation)¿¡ ±â¿©ÇÑ´Ù´Â °ÍÀ» ±Ô¸íÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


5. Roy, N. et al. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev. 30, 2669-83 (2016). doi: 10.1101/gad.291021.116
  • ÃéÀå°ü¼¼Æ÷¾Ï (pancreatic ductal adenocarcinoma; PDA)ÀÇ ÁøÇà´Ü°è¿¡¼­ PDXÀÇ ´Ù¾çÇÑ ±â´ÉÀ» ºÐ¼®Çϱâ À§ÇÏ¿© ChIP-seq, RNA-seq, BrU-seq ±â¹ýÀ» Àû¿ëÇÏ¿´´Ù. ThruPLEX¢ç DNA-Seq Kit´Â PDX-1 immunoprecipiated DNA·ÎºÎÅÍ ChIP-seq library¸¦ Á¦ÀÛÇϱâ À§ÇØ »ç¿ëµÇ¾ú´Ù.
  • º» ³í¹®ÀÇ ÀúÀÚ´Â ÃéÀå°ü¼¼Æ÷¾Ï(PDA)ÀÇ ÁøÇà´Ü°è¿¡¼­ PDX1ÀÇ ¿ªÇÒÀ» ±¸ºÐÇÏ¿´À¸¸ç ¹ß¾ÏÀÛ¿ë (carcinogenesis)ÀÇ °¢±â ´Ù¸¥ ´Ü°è¿¡¼­ PDX1 À¯ÀüÀÚÀÇ ±â´ÉÀ» ÀÌÇØÇÏ´Â °ÍÀº ÃéÀå°ü¼¼Æ÷¾Ï Ä¡·áÀÇ ÀáÀçÀûÀΠŸ°ÙÀÌ µÉ ¼ö ÀÖÀ½À» Á¦¾ÈÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


6. Luizon, M.R. et al. Genomic characterization of metformin hepatic response. PLOS Genet. 12, e1006449 (2016). doi: 10.1371/journal.pgen.1006449
  • Àΰ£ °£¼¼Æ÷ (Human hepatocyte)¿¡¼­ metformin hepatic response¿Í ¿¬°üµÈ À¯ÀüÀÚ¿Í Á¶ÀýÀÎÀÚ¸¦ ±Ô¸íÇϱâ À§ÇÏ¿© ChIP-seq°ú RNA-SeqÀ» ÀÌ¿ëÇÏ¿´À¸¸ç, ThruPLEX¢ç DNA-Seq KitÀ¸·Î ChIP-seq library¸¦ Á¦ÀÛÇÏ¿´´Ù.
  • º» ³í¹®ÀÇ ÀúÀÚ´Â Àΰ£ °£¼¼Æ÷ÀÇ metformin-dependent responseÀÇ Æ÷°ýÀûÀÎ À¯Àüü¹üÀ§ ºÐ¼® µ¥ÀÌÅ͸¦ Á¦°øÇϸç, ¶ÇÇÑ Á¦ 2Çü ´ç´¢ (Type 2 diabetes)¿¡ ´ëÇÑ ÀáÀçÀûÀÎ
    Ä¡·á °¡´É¼ºÀ» Á¦½ÃÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


7. Spangle, J.M. et al. PI3K/AKT signaling regulates H3K4 methylation in breast cancer. Cell Rep. 15, 1-13 (2016). doi: 10.1016/j.celrep.2016.05.046
  • ChIP-seq, RNA-seq ºÐ¼®À» ÀÌ¿ëÇÏ¿© À¯¹æ¾ÏÀÇ ÀüÀÓ»ó´Ü°è ¸ðµ¨¿¡¼­ PI3K/AKT pathway activationÀÇ ¿ªÇÒÀ» ±Ô¸íÇÏ¿´´Ù. H3K4me3, KDM5A À¯ÀüÀÚÀÇ subcellular localizationÀ» ÃøÁ¤Çϱâ À§ÇÏ¿© ThruPLEX¢ç DNA-Seq Kit·Î ChIP-seq library¸¦ Á¦ÀÛÇÏ¿´´Ù.
  • º» ³í¹®ÀÇ ÀúÀÚ´Â À¯¹æ¾Ç¼ºÁ¾¾ç (breast malignancies)¿¡¼­ epigenetic landscape¸¦ Á¶ÀýÇÏ´Â PI3K/AKT signaling pathwayÀÇ Á߿伺À» ÀÔÁõÇÏ¿´´Ù. ¶ÇÇÑ, AKT/KDM5A
    º¹ÇÕü¿¡ ÀÇÇØ Á¶ÀýµÇ´Â ¼¼Æ÷ÁÖ±â À¯ÀüÀÚÀÇ ¹ßÇö (the expression of cell-cycle genes)ÀÌ ÁøÇ༺À¯¹æ¾Ï (advanced-stage breast cancer)¿Í ¿¬°üµÇ¾îÀÖÀ½À» ±Ô¸íÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


8. Hojo, H. et al. Sp7/Osterix Is restricted to bone-forming vertebrates where it acts as a Dlx co-factor in osteoblast specification. Dev. Cell 37, 1-16 (2016).
   doi: 10.1016/j.devcel.2016.04.002
  • ¸¶¿ì½º °ñÇü¼º ´Ü°èÀÇ Àü»çÀÎÀÚÀÎ Sp7/OsterixÀÇ ¿ªÇÒÀ» ºÐ¼®Çϱâ À§ÇÏ¿© ChIP-seq, RNA-seqÀÌ ÀÌ¿ëµÇ¾ú´Ù. º» ³í¹®ÀÇ ÀúÀÚ´Â biotin-motif¿Í ¼¼ °³ÀÇ FALG epitope°¡
    Sp7 ´Ü¹éÁúÀÇ C-¸»´Ü¿¡ °áÇյǾî ÀÖ¾î Sp7 ´Ü¹éÁúÀÇ °áÇÕºÎÀ§¸¦ ChIPÀ¸·Î È®ÀÎÇÒ ¼ö ÀÖ´Â ÇüÁúÀüȯ ¸¶¿ì½º ¶óÀÎ (transgenic mouse line)À» Á¦ÀÛÇÏ¿´´Ù. ±× ÈÄ, ThruPLEX¢ç DNA-Seq KitÀº ChIP-seqÀ» ÅëÇÑ Á¶°ñ¼¼Æ÷ ¼ºÀåÀÎÀÚ (osteoblast enhancers)¸¦ ±Ô¸íÇϱâ À§ÇÏ¿© ÀÌ¿ëµÇ¾ú´Ù.
  • º» ³í¹®Àº Sp family Áß¿¡¼­µµ Sp7 ´Ü¹éÁúÀÇ ÃâÇöÀÌ Ã´Ãßµ¿¹°ÀÇ ÁøÈ­ °úÁ¤ Áß Á¶°ñ¼¼Æ÷ÀÇ ¹ß»ý¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ¿´À» °ÍÀ¸·Î º¸°íÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


9. Cejas, P. et al. Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles. Nat Med. 22, 685-691 (2016).    doi:10.1038/nm.4085
  • º» ³í¹®Àº Histone markÀÇ Á¤È®ÇÑ °ËÃâÀ» À§ÇÏ¿© FFPE Á¶Á÷ »ùÇ÷κÎÅÍ soluble chromatinÀÇ ½Å·Ú¼º ³ôÀº ÃßÃâÀ» À§ÇÑ »õ·Î¿î ¹æ¹ý, Fixed tissue chromatin immunoprecipitation sequencing (FiT-seq)¿¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇÑ´Ù. ThruPLEX¢ç DNA-Seq Kit¸¦ »ç¿ëÇÏ¿© FFPE »ùÇ÷κÎÅÍ FiT-seq library¸¦, Fresh frozen »ùÇ÷κÎÅÍ ChIP-seq library¸¦ Á¦ÀÛÇÏ¿´À¸¸ç, µÎ »ùÇ÷κÎÅÍ µµÃâµÈ µ¥ÀÌÅÍ´Â ¼­·Î ÀÏÄ¡ÇÏ´Â °ÍÀ¸·Î ÀÔÁõµÇ¾ú´Ù.
  • º» ¿¬±¸´Â FiT-seq¸¦ ÀÌ¿ëÇÏ¿© Á¾¾çƯÀÌÀû ÀÎÀÚ (tumor-specific enhancer)¿Í super enhancer¸¦ ºÐ¼®ÇÒ ¼ö ÀÖÀ¸¸ç, ¶ÇÇÑ Å©·Î¸¶Æ¾»óÅ (chromatin state)°¡ ¾î¶»°Ô À¯ÀüÀÚ
    Á¶Àý¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´ÂÁö¸¦ º¸¿©ÁØ´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


10. Si, S. et al. Loss of Pcgf5 affects global H2A monoubiquitination but not the function of hematopoietic stem and progenitor cells. PLOS One 11, e0154561
    (2016).
doi: 10.1371/journal.pone.0154561.
  • º» ³í¹®Àº ChIP-seq°ú RNA-seqÀ» ÀÌ¿ëÇÏ¿© hematopoietic stem cell and progenitor cell (HSPCs)¿¡¼­ÀÇ Polycomb-group RING finger protein (Pcgf5)ÀÇ ¿ªÇÒÀ» ºÐ¼®ÇÏ¿´´Ù. ChIP-seq library´Â ThruPLEX¢ç DNA-Seq KitÀ» ÀÌ¿ëÇÏ¿© Á¦À۵Ǿú´Ù.
  • ChIP-seq ºÐ¼® °á°ú, pcgf5-deficient HSPCs¿¡¼­´Â H2AK119ub1ÀÇ ¼öÁØÀÌ °¨¼ÒÇÑ´Ù´Â °ÍÀ» ¹àÇûÀ¸³ª À¯ÀüÀÚ¹ßÇö ¼öÁØ°úÀÇ °ü·Ã¼ºÀº ¹àÈ÷Áö ¸ø ÇÏ¿´´Ù. º» ³í¹®ÀÇ ÀúÀÚ´Â Pcgf5°¡ in vivo ¸ðµ¨¿¡¼­ Histone H2AK119 monoubiquitiationÀ» Á¶ÀýÇÏÁö¸¸, Á¶Ç÷ÀÛ¿ë¿¡¼­ÀÇ ¿ªÇÒÀº ¹Ì¹ÌÇÏ´Ù°í °á·Ð Áö¾ú´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


11. O'Brien, L.L. et al. Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 143, 595-608
    (2016).
doi: 10.1242/dev.127175
  • º» ³í¹®¿¡¼­´Â nephrogenesis °úÁ¤ µ¿¾ÈÀÇ ¸¶¿ì½º ¹× Àΰ£ÀÇ ½ÅÀå Àü±¸¼¼Æ÷ (kidney progenitor cell)¿¡¼­ Àü»çÀÎÀÚ Six2ÀÇ Á¶Àý ÀÛ¿ëÀ» ChIP-seq, RNA-seqÀ» ÀÌ¿ëÇÏ¿©
    ºñ±³ÇÏ¿´´Ù. ThruPLEX¢ç DNA-Seq KitÀ» ÀÌ¿ëÇÏ¿© ¸¶¿ì½º¿Í Àΰ£ ChIP DNA·ÎºÎÅÍ Sequencing library¸¦ Á¦ÀÛÇÏ¿´´Ù.
  • º» ³í¹®Àº Àΰ£°ú ¸¶¿ì½ºÀÇ ³×ÇÁ·Ð Àü±¸Ã¼ »çÀÌ¿¡´Â ¼­·Î ´Ù¸¥ ¿©¼¸ °³ÀÇ Á¶ÀýÀÎÀÚ°¡ °ü¿©ÇÏ°í ÀÖÀ½À» ±Ô¸íÇÏ¿´À¸¸ç Àü±¸Ã¼ ¼¼Æ÷ÀÇ ÀÚ°¡Àç»ý(self-renewal)°ú Àΰ£ ½ÅÀåÀÇ nephrogenesis¿¡ ´ëÇÑ ÀáÀçÀûÀÎ ¿¬°ü¼º (potential mechanistic link)À» Á¦½ÃÇÏ¿´´Ù.
³í¹® ÀÚ¼¼È÷ º¸±â >>


[ChIP-seq ±â¼ú ºñ±³ ³í¹®-Review]
1. Sundram A.Y.M. et al. A comparative study of ChIP-seq sequencing library preparation methods. BMC Genomics 17, 816 (2016). doi: 10.1186/s12864-016-3135-y
  • º» ³í¹®Àº 1ng, 0.1ngÀÇ H3K4me3 ChIP DNA¸¦ ÀÌ¿ëÇÏ¿© low-input DNA ¶Ç´Â ChIP-seq sampleÀ» À§ÇÑ 7°³ÀÇ preparation kit (Accel-NGS¢ç 2S, Bowman-method,
    HTML-PCR, SeqPlex¢â, DNA SMART¢â, TELP and ThruPLEX¢ç DNA-Seq Kit)À» ºñ±³ ºÐ¼®ÇÏ¿´´Ù.
  • ³í¹®¿¡¼­ Å°Æ®¸¦ ºñ±³ÇÑ °á°ú, Rubicon Genomics ThruPLEX¢ç DNA-Seq KitÀº peak calling, peak strength correlation, IDR µîÀÇ ºÐ¼® µ¥ÀÌÅÍ¿¡¼­ ¶Ù¾î³­ µ¥ÀÌÅÍ È¿À²À»
    º¸¿´À¸¸ç, ƯÈ÷ º» Á¦Ç°Àº ¡°single-tube protocol¡±ÀÌ °­·ÂÇÑ ÀåÁ¡À̶ó´Â °ÍÀ» ¸í½ÃÇÏ¿´´Ù.

    (³í¹®¿ø¹®¹ßÃé)
    "The ThruPLEX reagents from Rubicon Genomics scored a close second on the critical metrics of peak calling, peak strength correlation, and IDR. Notably, the efficient and single-tube protocol for these reagents also makes them an attractive choice."